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Local concentration profile of colloidal particles inside a charged cylindrical pore
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A simple theoretical scheme is employed to calculate the equilibrium local concentration profile of a model
suspension of highly charged colloidal particles inside a cylindrical pore in the regime corresponding to thick
and narrow pores. In addition, we report results of Brownian dynamics simulations for some of the systems
presented here. We have found that the local concentration profile in this geometry scales in quite a similar way
as in the vicinity of a confining charged wall.@S1063-651X~97!01204-X#

PACS number~s!: 82.70.Dd, 05.40.1j
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I. INTRODUCTION

The properties of liquids confined in restricted spaces
been the subject of long-standing theoretical and pract
interest@1#. Understanding how the equilibrium structure a
transport properties of confined liquids compare to their b
properties is an important issue in many practical proces
and systems, such as those involving a liquid that perme
a porous medium@2#. One interesting regime is that in whic
the relevant scale of the confining geometry~e.g., the size of
the pores! is of the order of the mean interparticle distanc
At this space scale, a molecular description of the proper
of the fluid cannot be avoided. Although the observation
the average structure of the few molecules of a liquid t
permeates a very narrow pore may not be easy to observ
truly molecular systems, similar conditions may appear
may be prepared at a mesoscopic scale in the field of co
physics. Thus, for example, the colloidal realization of
fluid confined between two parallel walls has been obser
rather directly by video microscopy techniques@3#. As the
distance between the confining walls increases, the evolu
of the main structural features of the system is followed,
the confinement varies from the extreme condition cor
sponding to a quasi-two-dimensional liquid or cryst
through the destabilization of the corresponding monolay
up to the appearance of a three-dimensional~3D! bulk region
between the plates@3#. These experiments have stimulat
the corresponding theoretical work, one aspect of which
mands the methods of the statistical mechanical theory
inhomogeneous fluids@4#. Although the precise determina
tion of the effective forces between the colloidal particles
the confined suspension must be the subject of careful s
@5#, it is also true that some of the most general structu
properties may depend on rather general features of t
effective interactions. Thus, it is also instructive to study
properties of somewhat idealized models based on s
simple and general types of effective pair forces. For
ample, in recent work, the structure of a Yukawa fluid co
fined by two parallel walls was studied theoretically, and
computer simulations@6#. In addition to the general an
rather expected features of the local structure induced by
confinement, other interesting effects were also revealed
these studies, such as the possibility of the formation of
551063-651X/97/55~4!/4406~7!/$10.00
s
al

k
es
es

.
s
f
t
in
r
id

d

on
s
-
,
r,

e-
of

f
dy
l
se
e
e
-
-
y

he
by
n

adsorbed monolayer at the confining walls, and the forma
of a depletion gap in the neighborhood of such a monola
@7#. Similarly, in the context of the study of simple fluid
inside cylindrical pores, interesting layering transitions ha
also been predicted@8#.

Very much along this line of research, in this paper w
report the results of our recent work on the description o
model colloidal fluid ~the Yukawa fluid! that permeates a
narrow cylindrical pore. Here we calculate the local conce
tration n(r ) of fluid particles in the interior of the pore
which are in contact with a reservoir at bulk concentrati
n. The theoretical calculations derive from a simple appro
mate scheme, based on the Wertheim-Lovett equation
n(r ) complemented with the so-called hypernetted ch
~HNC! closure plus the simplification that replaces the inh
mogeneous two-particle direct correlation function by
bulk value@9#. This approximate theory allows us to calc
late the local concentration profilen(r ) for a variety of con-
ditions. In order to assess the accuracy of these predicti
we perform Brownian dynamics computer simulation
which are also reported. The comparison indicates that
approximate theoretical scheme does provide the cor
general picture of this structural property, although the qu
titative comparison is very similar to what was observed
the Yukawa fluid permeating the space between two para
walls @9#. In Sec. II we explain the model system studied, t
approximate theory employed to calculaten(r ), and give
some details of the computer simulations. The results
presented and discussed in Sec. III. The main conclusions
summarized in Sec. IV.

II. MODEL SYSTEM AND APPROXIMATE THEORY

To illustrate the general experimental conditions that
have in mind, consider a colloidal suspension of high
charged polystyrene spheres in water at low ionic stren
Imagine that we have a very long capillary of conical sha
of length L and internal radiusRM andRm at its two ex-
tremes, withRM.Rm , andL@RM . If immersed in the sus-
pension, and after equilibrium is reached, the colloidal p
ticles will penetrate the interior of the capillary. We then a
what is the local structure~i.e., the average local concentra
tion! of the suspended particles at any point in the interior
4406 © 1997 The American Physical Society
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55 4407LOCAL CONCENTRATION PROFILE OF COLLOIDAL . . .
this capillary, for given elementary parameters such as th
pertaining to the suspension~the diameters, chargeQ, the
bulk concentration of the colloidal particles, and the inve
Debye lengthk), and those referring to the capillary~the
length L and radii RM and Rm , and the internal surface
charge densitysel). Rather than stressing the many comp
cations involved in preparing and characterizing this sys
~i.e., in determining those parameters!, we consider instead
an idealized and simplified limiting model. Thus, we sh
only consider the limit in which the capillary looks locall
cylindrical, and will study the structure of the colloidal flui
inside an infinitely long cylinder of radiusR. In this limit,
n(r )5n(r;R), wherer is the distance from the cylinder’
axis.

As for the potentialC(r ) of the force exerted by the
charge density of the cylinder’s inner surface, on a particle
chargeQ at positionr inside the cylinder, we shall introduc
some simplifications on top of the conventional Deby
Hückel approximation@10,11#. Thus, we assume thatC(r ) is
given byC(r )5Qc(r ), wherec(r ) is the solution of the
linearized Poisson-Boltzmann equation¹2c(r )5k2c(r ) for
r inside the capillary, wherek is the inverse Debye length
Solving this equation with the adequate boundary conditio
one finds that, for an infinitely long cylinder,C(r) can be
written as

bC~r!5aI 0~kr!, ~2.1!

whereb5(kBT)
21, with kB being Boltzmann’s constant an

T the temperature, and whereI 0(x) is the modified Besse
function of order zero@12#. In this equation,a is a constant
that depends onR and is linear inQ and ins. We find it
more convenient to rewrite this equation as

bC~r!5Kw

I 0~kr!

I 0~kR8!21
, r,R8, ~2.2!

with R8 being the distance from the cylinder axis to the po
at which a particle is in contact with the cylinder’s inner ha
wall. Thus, ifR is the actual radius of the cylinder, and if w
assume the particle to have a hard-sphere diameters, then
R8[R2s/2, andKw is the electrostatic potential energy,
units of kBT, of a particle in contact with the cylinder wal
referred to the potential at the center of the cylinder.

Concerning the pair potential between two colloidal p
ticles, it will be modeled by the screened Coulomb
Yukawa potential@10,13#. This is, of course, completely jus
tified when the two particles are in the bulk suspension,
when they are in the interior of a very narrow pore, t
conditions of confinement will definitely give rise to modifi
cations from this simple pair potential. Nevertheless, one
expect that the Yukawa form is still a reasonable zeroth or
approximation, which at least retains the basic soft repuls
character that a more detailed calculation is expected to
hibit. To conform with previous work of a similar kind@9#,
we write the pair potential in dimensionless form as

bu~r !5H `, r,s

K exp@2z~r /s21!#

~r /s!
, r.s,

~2.3!
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wherez[ks.
Once we have specified the one- and two-particle pot

tials, the next step is to define the approximate theoret
scheme that allows us to calculaten(r). Just as in Ref.@9#,
our theoretical calculations will also be based on t
Wertheim-Lovett equation of the theory of inhomogeneo
fluids, which, complemented with the HNC closure@4#, reads

lnn~r !1bC~r !2E d3r 8cb~ ur2r 8u!n~r 8!5const, ~2.4!

where the additional simplification, consisting of the replac
ment of the inhomogeneous direct correlation functi
c(r ,r 8) by its bulk valuecb(ur2r 8u), was also introduced
The constant on the right-hand side of this equation is eli
nated by subtracting the same equation evaluated at a p
in the bulk, wheren(r )5n andC(r )50. Thus, defining the
functionH(r ) by means of the relation

n~r ![n@11H~r !#, ~2.5!

and recognizing the fact thatC(r ), and hence alsoH(r ),
only depends on the radial distancer to the cylinder’s axis,
we can rewrite Eq.~2.4! as

ln@11H~r!#1bC~r!2nE d3r 8cb~ ur2r 8u!H~r8!50.

~2.6!

This is a nonlinear equation that has to be solved num
cally. Here we have implemented the method described
Zhou and Stell@14#, which writes this equation in terms o
the direct and inverse Fourier transform of the functions
volved. The bulk direct correlation functioncb(r ) was ob-
tained by solving the Ornstein-Zernike equation in the bu
using the Rogers-Young closure relation@15#.

To assess the predictions of our simplified model,
have carried out Brownian dynamics simulations to calcul
the concentration profile of the particles confined inside
cylinder. The method of Brownian dynamics, as proposed
Ermak and McCammon@16#, is based on the solution of th
generalized N-particle diffusion equation. Within this
scheme, the displacement of thei th particle~during a short
enough time intervalDt) is given by

r i~ t1Dt !2r i~ t !5bD0FiDt1Ri~Dt !, ~2.7!

where D0 is the free-particle diffusion coefficient, an
Ri(Dt) is a random Gaussian displacement of the partic
which is assumed to have zero mean and variance 6D0Dt.
The forceFi in this equation arises from the direct intera
tions of theith particle with the cylinder’s field of force and
with the other Brownian particles in the system. Also,
order to minimize edge effects due to the finite size of
simulation system, we have used conventional@17# periodic
boundary conditions in thez direction.

The connection of the computer simulations with t
theoretical results is made by fixing the total number of p
ticlesN inside the volumepR2L of the basic simulation cel
~of lengthL in the z direction! such that



pe

ar

r
ur
t
on

ll-

t
of
ib
th
ta
id
n

ce
t

s

ti
c
a

sid

e
lin
c
o
e
s,
so

is

t

-

a
ear
he

or

to a

ap-

as
1,
a-
of

c-
lk

b-
t

,
to

d.
to
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nav[
N

pR2L
5

*0
Rn@11H~r!#2prdr

pR2 , ~2.8!

whereH(r) is obtained from the solution of Eq.~2.6!. In
practice, for a given system~i.e., fixed one- and two-particle
interaction potentials, and fixedn), Eq. ~2.8! fixes the ratio
N/L. Thus, we made the pertinent tests to discard any de
dence of the simulation results onN and/or onL by varying
these parameters, keeping their ratio fixed by Eq.~2.8!, until
no dependence was found onH(r). In many cases we found
that already withN;100 convergence was observed, p
ticularly when the ratioN/L was small.

III. RESULTS

Let us now present the results forn* (r)
[n* @11H(r)#, wheren* is the dimensionless bulk numbe
concentrationn*5ns3. For a systematic presentation of o
results, let us notice that the independent parameters tha
could vary are those referring to the bulk suspensi
namely, the Yukawa parametersK andz, and the bulk con-
centration n* , and the parameters referring to the wa
particle interaction, namely,Kw andR8. Varying those five
parameters we can generate all the possible structures
the Yukawa fluid will adopt when confined in the interior
the cylinder. Here we shall not exhaust all those poss
structures, but will choose some of them to illustrate
various regimes that appear when the screened electros
interactions dominate. Thus, for concreteness, let us cons
a typical suspension of highly charged spheres at low io
strength. Parameters representative of these conditions
z50.15,K5400, andn*58.431024. One relevant length
for this system is the mean interparticle distan
l *5l /s[n*21/3, which for this system is abou
l *510.6, i.e., of the order of the screening lengthz21

(56.67 for this system!. The bulk structure for this system i
represented by the radial distribution functiong(r ), which
defines another relevant length scale, namely, the correla
lengthl ~the distance at whichg(r ) reaches its asymptoti
limit !. For the particular suspension that we are using as
illustration,l*5l/s;5l * .

Let us now consider the structure of the suspension in
a cylinder of radiusR8 and repulsion parameterKw , in con-
tact with the bulk reservoir above. In first approximation w
can classify the various possible structures inside the cy
der in terms of the ratio of the mean interparticle distan
l and the radiusR8. In reality, we shall restrict ourselves t
values ofKw large enough so that the hard contact betwe
one particle and the wall will be completely unlikely. Thu
n(r) will always be nearly zero not only at contact, but al
within a finite region between the wall (r5R8) and a certain
effective distanced of closest approach to the wall. Th
defines an effective radiusRef5R82d of the cylinder, which
will depend onR8 but also onKw . Thus, if we comparel
with the thickness of the cylinder, it makes more sense
comparel with Ref , rather than withR8 itself.

A. Very thick cylinders

Let us first consider ‘‘very thick’’ cylinders, i.e., the re
gime in whichRef@l . First of all, let us notice that in the
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actual limit l /R8→0, the structure of the confined Yukaw
fluid inside a cylinder approaches that of the same fluid n
a charged planar wall, a condition studied previously. T
solid line in Fig. 1 exhibits n(r) as a function of
x[R82r, as obtained from the solution of our theory, f
the illustrative bulk parameters above (K5400, z50.15,
n*58.431024), and for Kw5400 andR85100s. As it
turns out, already for this radius, the shape ofn(r) near the
wall has approached its asymptotic value corresponding
flat surface (R85`), up to the resolution of the figure. From
the solid line, we can see that the distance of closest
proach to the wall is aboutd*'10, so that the effective
radius corresponding toKw5400 andR85100s is about
Ref'90s. The other important feature to notice is thatRef is
not only much larger thanl ('10.6s), but is already larger
than the bulk correlation lengthl ('50s). As a result, the
local concentrationn* (r) attains its bulk valuen* inside a
region around the cylinder axis, defined approximately
r,(Ref2l). Thus, we can say that the solid line in Fig.
which corresponds to a thick cylinder of large but finite r
dius, is representative of the regime in which the structure
the confined Yukawa fluid is virtually identical to the stru
ture of the fluid near a flat wall, and with a well-defined bu
region in the middle of the cylinder.

In this regime, two interesting scaling properties are o
served inn(r). The first of them refers to the fact tha
n(r) only depends on the bulk parametersn* , K, andz, and
onKw , but not onR8, whenn(r) is plotted as a function of
the wall-particle distancex5R82r, as done in Fig. 1. Thus
the solid line in that figure not only corresponds
R85100s, but also to any other value ofR8 larger than
100s, as well as to values ofR8 smaller than 100s, but still
larger thanl ('50s), say, down to aboutR8'70s. For
R8 of the order ofl, deviations from this rule are observe
This is illustrated in Fig. 1 by the curve, corresponding

FIG. 1. Local concentration profilen* (r), plotted as a function
of x5R82r, for three different values ofR8 (R8530s, 50s,
100s) and forKw5400. The bulk parameters aren*58.431024,
K5400, andz50.15.
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R8550s, which is slightly below the threshold condition
Ref'l. As one can see from the comparison with the sol
line (R85100s), the quantitative differences are still rathe
small, even though forR8550s the bulk region around the
cylinder axis has disappeared completely. It is also intere
ing to notice that even if we decreaseR8 still further, so that
the structure ofn(R82x) is constituted only by two maxima,
at least the shape and position of the main peak are still
dramatically different from the limiting conditionR8→`.
This is also illustrated in Fig. 1 by the curve correspondin
to R8530s, in whichRef'20s, i.e., only twicel , and defi-
nitely smaller than the correlation lengthl.

The fact thatn(R82x) becomes independent ofR8 for
large cylinder radius should not be surprising. The reason
that the wall-particle potentialC(r) in Eq. ~2.2!, which in
general depends onKw and R8, becomes independent o
R8 for largeR8 when written in terms of the wall-particle
distancex, i.e., whenR8→`, bC(R82x)'Kwe

2kx. In this
very same limit, and for the same reason, a second sca
property ofn(R82x) can be predicted. Thus, notice that th
asymptotic form~large R8) of the wall-particle potential,
bC(r,R8,Kw)5Kwe

2k(R82r), has the property

bC~r,R~1!,Kw
~1!!5bC~r,R~2!,Kw

~2!!, ~3.1!

provided thatR(2)5R(1)1d, with d5k21ln(Kw
(2)/Kw

(1)). This
means that the force that a particle feels at a distancer from
the axis of a cylinder radiusR(1) and wall-particle parameter
Kw
(1) is the same as that felt by the same particle at the sa

distance from the axis of another cylinder of radiusR(2) and
wall-particle parameter Kw

(2), provided that R(2)

5R(1)1k21ln(Kw
(2)/Kw

(1)). As a consequence, the particle
from the same reservoir will structure identically@when
n(r) is plotted as a function ofr# when they penetrate these

FIG. 2. Local concentration profilen* (r), plotted as a function
of x5R82r, for two different values ofKw andR8. The solid line
corresponds toKw5400 andR85R(1)5100s. The dashed line cor-
responds toKw5800 andR85R(2)5104.62s. The bulk parameters
are the same as in the previous figure.
d
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two cylinders. Clearly, whenn(r) is plotted as a function of
the wall-particle distancex5R82r, the two curves will
appear shifted by a displacement given
d5k21ln(Kw

(2)/Kw
(1)). This is illustrated in Fig. 2, where

n(R82x;Kw) is plotted for the same bulk conditions as
Fig. 1 for two different cylinder parameters, namel
Kw
(1)5400, R(1)5100s ~solid line!, Kw

(2)5800, and
R(2)5104.62s ~dashed line!, which satisfy R(2)5R(1)

1k21ln(Kw
(2)/Kw

(1)). If we displace the second curve to the le
by d54.62s, it coincides exactly with the solid curve.

We can summarize the consequences of the two sca
properties ofn(r) by the following statement. In the regio
of thick cylinders, when a well-defined bulk region is o
served in the middle of the cylinder, the shape
n(r,R8,Kw) does not depend onR8 when plotted as a func

FIG. 3. Local concentration profilen* (r), plotted as a function
of x5R82r, for R8530s, andKw5300, andKw5500, and for the
same bulk parameters as in Fig. 1. In~b! we have shifted the curve
corresponding toKw5500 to the left by d5k21ln(Kw

(2)/Kw
(1))

54.62s.
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tion of the wall-particle distancex5R82r. Furthermore, it
is also independent ofKw , since any two curvesn(x) cor-
responding to two different values ofKw will superimpose
after shifting one curve towards the other by a displacem
of the coordinatex given byd5k21ln(Kw

(2)/Kw
(1)).

B. Narrow Cylinders

Let us now discuss the regime in whichRef'l . Already
in Fig. 1 we presented the results forR8530s, Kw5400 in
the context of our discussion on the dependence ofn(r) on
the cylinder’s radiusR8. There we saw that the scaling pro
erty valid for thick cylinders, and consisting of the indepe
dence ofn(R82x) on R8, broke down forR8530s, well
inside the regime that we are now discussing (Ref'l ), al-
though the shape and position of the main peak
n(R82x) were clearly reminiscent of the limiting structur
for largeR8. In Fig. 3~a! we now illustrate the consequenc
of increasingKw from Kw5300 toKw5500, for the same
reservoir as in Figs. 1 and 2, but for a relatively narro
cylinder (R8530s). An obvious question here is to wha
extent the second scaling property will still apply in th
regime~well outside the regime of very thick cylinders!. As
indicated in Fig. 3~b!, after shifting the solid curve until the
two maxima are in the same position, and as expected,
two curves do not coincide exactly, but they are remarka
similar, even quantitatively. Besides this observation, F
3~a! also illustrates the main features of the evolution
n(r) when Kw increases, keepingR8 fixed, namely, the
shifting of the main peak ofn(r) away from the wall, and
the approach of the second peak towards the cylinder’s a

In Fig. 4 we plotn(r), now as a function of the distanc
from the axis, forKw5500, 1000, 1500, and 2000, to illus
trate the eventual disappearing of the second peak, and
corresponding approach of the main peak to the cylind
axis. In this sequence, the radius of the cylinder was k
fixed (R8530s). We should mention that a similar trend

FIG. 4. Local concentration profilen* (r) for R8530s and for
Kw5500, 1000, 1500, and 2000. The bulk parameters are the s
as in Fig. 1.
nt
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observed if we keepKw fixed, while decreasingR8. In either
case one interesting structure is observed, illustrated in Fi
by the curve corresponding toKw51500. This is character
ized by a single, fairly well defined peak inn(r), of width
Dr, located at a distancermax from the axis. For this particu-
lar case,Dr'4s, andrmax'6s. Thus, (Dr/2),rmax, and
this means that for this value ofKw , the region inside the
cylinder of radiusR8 to which the particles are confined is
cylindrical shell of inner radiusrmax2Dr/2, and outer radius
rmax1Dr/2. This is a remarkable condition of sel
confinement resulting from the equilibrium of the wa
particle interactions, which tend to confine all the particles
the cylinder axis, and the particle-particle repulsions, wh
tend to expand the volume occupied by the particles. Clea
if the wall-particle interactions continue to increase, as in
cated by the curve corresponding toKw52000, the position
of the peak is shifted towards the axis, resulting eventually
a single peak located atrmax50. Further increase inKw will
result in the eventual expulsion of all the particles inside
cylinder, manifested in a decrease of the height of the
maining central peak ofn(r).

C. Comparison with computer simulations

In this manner, we have described the sequence of st
tural changes inn(r) predicted by the theory, when the wal
particle parametersR8 andKw are varied, keeping the bulk
parametersn* , z, andK fixed. The general conclusion is tha
the main qualitative effects are basically the same if we
ther decreaseR8 or increaseKw . These effects refer to a
progressive confining of the particles toward the center,
their eventual expulsion from the cylinder. Let us now co
ment on the results of the computer simulations for the sa
property. The most interesting regime in our analysis is t
in which the effective radiusRef is of the order of the corre-

me FIG. 5. Comparison between the theoretical results forn* (r)
~lines! and computer simulations~symbols!, for R8530s, and for
Kw5500 and 1000. Open circles correspond to simulation res
with Kw5500. Open triangles correspond to simulations w
Kw51000. The bulk parameters are the same as in Fig. 1.
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lation length, or even of the mean distance. This regime
illustrated here by Figs. 3 and 4. Before presenting the c
responding simulation results, let us mention that the co
parison between the present theory and the computer s
lation was already discussed in the context of the pla
geometry@9#. Such discussion applies to our present probl
when we refer to the regime of very thick cylinde
(R8→`; see Fig. 1!. As illustrated in @9#, the computer
simulations exhibit the same general features predicted
the theory, and except for quantitative discrepancies in
heights of the maxima and minima ofn(R82x), the general
quantitative agreement between theory and simulations
be said to be good. Although with a little less quantitati
accuracy, the same statement can be made concernin
corresponding comparison~theory versus simulations! in the
interior of narrow cylinders, and this is what we now discu

In Figs. 5 and 6 we have again the four curves of Fig.
but now compared with their corresponding computer sim
lation results. These figures illustrate the nature of the g
eral agreement between the present theory and the c
sponding simulations. From this comparison, we find that
agreement is qualitatively pretty good, concerning the nu
ber and location of the maxima ofn(r). Their height, how-
ever, is generally underestimated by the theoretical pre
tions. These comments apply to most of the conditions
studied, including those employed here to illustrate the
The most important departures refer to the most extreme
illustrated by the curve corresponding toKw52000 in Fig. 6,
in which the structure ofn(r) is reduced to a single peak
almost centered at the axis. It is also interesting to notice
the scaling properties discussed before continue to hold
though in an approximate manner, even in the regime ill
trated by Fig. 5, which is well outside the regime corr
sponding to thick cylinders. Thus, as discussed above
largeR8, the shape ofn(r) does not depend onR8 or Kw ,
thus being a function only of the bulk parametersn* , z, and
K, provided the curves forn(r) for differentR8 andKw are
made to coincide in the position, for example, of the fi
maximum. This is illustrated in Fig. 7, where the curv

FIG. 6. Same as in Fig. 5, but withKw51500 and 2000.
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corresponding toKw51000 were shifted so that the positio
of the main peak of the computer simulatedn(r) coincides
with the position of the main peak of the computer simula
n(r) corresponding toKw5500. The magnitude of the dis
placementd, however, is no longer explained by the ru
d5k21ln(Kw

(2)/Kw
(1)), which holds for thick cylinders~this

rule would predict d54.62s, whereas the displacemen
needed for Fig. 7 wasd'5.6s). As observed from this fig-
ure, however, the scaling rule holds here to a very go
degree of quantitative accuracy, both for the theoretical
the simulated results, at least regarding the main peak
n(r).

IV. CONCLUSIONS

We can now summarize the results presented in this
per. First of all, we learned the scaling properties ofn(r),
which basically states that the independence ofn(r) on the
wall-particle interaction parametersR8 andKw, when plotted
adequately, holds quite accurately for thick cylinders. S
prisingly enough, however, the same prediction holds se
quantitatively also for very narrow cylinders. Our discussi
was illustrated with both theoretical calculations a
computer simulations for a typical bulk system (n*
58.431024, z50.15, K5400), varying the wall-particle
parametersR8 and Kw . The same scenario, however, w
observed whenn* was varied. In fact, increasingn* leads to
similar effects as increasingK. In both cases this leads to a
increase of the effects of the interparticle Yukawa repulsio
manifested by a more pronounced structure inn(r) ~i.e.,
higher maxima and lower minima!, and by a reduction of the
effective distance of closest approach of the particles to
cylinder hard wall.

All the conclusions above are only valid as long as
restrict ourselves to systems in which direct hard-core c
tact between two particles and between one particle and
cylinder hard wall are prevented by a large value of bothK

FIG. 7. Same results as in Fig. 5, but with the theoretical a
simulated data corresponding toKw51000 shifted to the right by
d55.6s.
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andKw , respectively. When these conditions are not met
least in the asymptotic limitR8→`, one should expect othe
interesting effects, such as the formation of an adsor
monolayer in contact with the cylinder wall, followed by
depletion layer where the particles are not allowed to be
As we have seen in the last figures here, however, alread
the regime studied here other interesting effects appear,
as the confinement of the particles to a cylindrical shell
width Dr, and positionrmax, which collapses to a single
central peak inn(r) when the confining is extreme. In thi
extreme limit, the particles are virtually confined to the c
inder axis, with small radial deviations of extentDr. The
opposite process, in which this axial string of particles
destabilized, corresponds to the buckling transition. This c
responds to the condition in which the system breaks
confinement to essentially one dimension, to form structu
that use the radial dimension made available whenKw is
-
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t

d

.
in
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f

s
r-
ts
s

reduced orR8 is increased. Unfortunately, the most intere
ing features of this transition are not captures by the theo
ical approach employed here, although some of them
neatly revealed by the computer simulations. The discuss
of this aspect, along with others that fall outside the scope
this paper, is currently being investigated in detail.
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