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Local concentration profile of colloidal particles inside a charged cylindrical pore
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A simple theoretical scheme is employed to calculate the equilibrium local concentration profile of a model
suspension of highly charged colloidal particles inside a cylindrical pore in the regime corresponding to thick
and narrow pores. In addition, we report results of Brownian dynamics simulations for some of the systems
presented here. We have found that the local concentration profile in this geometry scales in quite a similar way
as in the vicinity of a confining charged wa]l51063-651X97)01204-X]

PACS numbg(s): 82.70.Dd, 05.40kj

[. INTRODUCTION adsorbed monolayer at the confining walls, and the formation
of a depletion gap in the neighborhood of such a monolayer
The properties of liquids confined in restricted spaces habk7]. Similarly, in the context of the study of simple fluids
been the subject of long-standing theoretical and practicanside cylindrical pores, interesting layering transitions have
interest 1]. Understanding how the equilibrium structure andalso been predictefs].
transport properties of confined liquids compare to their bulk Very much along this line of research, in this paper we
properties is an important issue in many practical processg€port the results of our recent work on the description of a
and systems, such as those involving a liquid that permeatégodel colloidal fluid (the Yukawa fluid that permeates a
a porous mediurfi2]. One interesting regime is that in which harrow cylindrical pore. Here we calculate the local concen-
the relevant scale of the confining geomeyg., the size of tration n(r) of fluid particles in the interior of the pore,
the poresis of the order of the mean interparticle distance.Which are in contact with a reservoir at bulk concentration
At this space scale, a molecular description of the propertie8. The theoretical calculations derive from a simple approxi-
of the fluid cannot be avoided. Although the observation ofmate scheme, based on the Wertheim-Lovett equation for
the average structure of the few molecules of a liquid than(r) complemented with the so-called hypernetted chain
permeates a very narrow pore may not be easy to observe {HINC) closure plus the simplification that replaces the inho-
truly molecular systems, similar conditions may appear oimogeneous two-particle direct correlation function by its
may be prepared at a mesoscopic scale in the field of colloiulk value[9]. This approximate theory allows us to calcu-
physics. Thus, for example, the colloidal realization of alate the local concentration profitgr) for a variety of con-
fluid confined between two parallel walls has been observeditions. In order to assess the accuracy of these predictions,
rather directly by video microscopy techniqui. As the ~ we perform Brownian dynamics computer simulations,
distance between the confining walls increases, the evolutiowhich are also reported. The comparison indicates that the
of the main structural features of the system is followed, agpproximate theoretical scheme does provide the correct
the confinement varies from the extreme condition corregeneral picture of this structural property, although the quan-
sponding to a quasi-two-dimensional liquid or crystal, titative comparison is very similar to what was observed for
through the destabilization of the corresponding monolayerthe Yukawa fluid permeating the space between two parallel
up to the appearance of a three-dimensi@8B) bulk region ~ walls[9]. In Sec. Il we explain the model system studied, the
between the plate3]. These experiments have stimulated approximate theory employed to calculaiér), and give
the corresponding theoretical work, one aspect of which desome details of the computer simulations. The results are
mands the methods of the statistical mechanical theory gfresented and discussed in Sec. Ill. The main conclusions are
inhomogeneous fluidg4]. Although the precise determina- summarized in Sec. IV.
tion of the effective forces between the colloidal particles of
the confined suspension must be the subject of careful study || vopeL SYSTEM AND APPROXIMATE THEORY
[5], it is also true that some of the most general structural
properties may depend on rather general features of these To illustrate the general experimental conditions that we
effective interactions. Thus, it is also instructive to study thehave in mind, consider a colloidal suspension of highly
properties of somewhat idealized models based on somegharged polystyrene spheres in water at low ionic strength.
simple and general types of effective pair forces. For exdmagine that we have a very long capillary of conical shape
ample, in recent work, the structure of a Yukawa fluid con-of lengthL and internal radiu®y, and R, at its two ex-
fined by two parallel walls was studied theoretically, and bytremes, withRy,>R,,,, andL>R,, . If immersed in the sus-
computer simulationg6]. In addition to the general and pension, and after equilibrium is reached, the colloidal par-
rather expected features of the local structure induced by thiicles will penetrate the interior of the capillary. We then ask
confinement, other interesting effects were also revealed byhat is the local structuré.e., the average local concentra-
these studies, such as the possibility of the formation of amion) of the suspended particles at any point in the interior of
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this capillary, for given elementary parameters such as thoseherez=«o.

pertaining to the suspensidthe diametefo, chargeQ, the Once we have specified the one- and two-particle poten-
bulk concentration of the colloidal particles, and the inversdials, the next step is to define the approximate theoretical
Debye lengthk), and those referring to the capillafthe  scheme that allows us to calculatép). Just as in Ref[9],
length L and radiiRy, and R,,, and the internal surface our theoretical calculations will also be based on the
charge densityr). Rather than stressing the many compli- Wertheim-Lovett equation of the theory of inhomogeneous
cations involved in preparing and characterizing this systenfluids, which, complemented with the HNC clos(i#é, reads
(i.e., in determining those parametgera/e consider instead

an idealized and simplified limiting model. Thus, we shall

only consider the limit in which the capillary looks locally nn(r)+g¥(r)— f dr’cy(|r—r’[)n(r')=const, (2.4
cylindrical, and will study the structure of the colloidal fluid
inside an infinitely long cylinder of radiuR. In this limit,
n(r)=n(p;R), wherep is the distance from the cylinder’s

axis. _ c(r,r’) by its bulk valuec,(|r—r’|), was also introduced.

As for the potentialW(r) of the force exerted by the The constant on the right-hand side of this equation is elimi-
charge density of the cylinder's inner surface, on a particle ofateqd by subtracting the same equation evaluated at a point
chargeQ at positionr inside the cylinder, we shall introduce j, the pulk, wheren(r)=n andW¥(r)=0. Thus, defining the
some simplifications on top of the conventional DEbye'functionH(r) by means of the relation
Huckel approximatiorf10,11]. Thus, we assume th&@t(r) is
given by W (r)=Qu(r), where(r) is the solution of the n(r=nl1+H(r 2
linearized Poisson-Boltzmann equat®Ry(r) = xk?y(r) for (n=nl 1. @29
r inside the capillary, where is the inverse Debye length. o

. : . . - ' _and recognizing the fact thal(r), and hence alsdi(r),
Solving this equation with the adequate boundary cond|t|onsonIy depegnds 0?1 the radial disga?mao the cylinder's faozis
one finds that, for an infinitely long cylindeW (p) can be we can rewrite Eq(2.4) as '
written as '

where the additional simplification, consisting of the replace-
ment of the inhomogeneous direct correlation function

BY¥(p)=alo(xp), 2.0 |n[1+H(p)]+B‘l’(p)—nf d3r " co(|r=r'|)H(p")=0.

whereg=(kgT) "1, with kg being Boltzmann’s constant and (2.6
T the temperature, and whelg(x) is the modified Bessel
function of order zer¢12]. In this equationg is a constant
that depends o and is linear inQ and ino. We find it
more convenient to rewrite this equation as

This is a nonlinear equation that has to be solved numeri-
cally. Here we have implemented the method described by
Zhou and Stel[14], which writes this equation in terms of
the direct and inverse Fourier transform of the functions in-
volved. The bulk direct correlation functiory,(r) was ob-
p<R’, (2.2 tained by solving the Ornstein-Zernike equation in the bulk,
using the Rogers-Young closure relatidib].

) D ) ) ) ] To assess the predictions of our simplified model, we
with R” being the distance from the cylinder axis to the pointhaye carried out Brownian dynamics simulations to calculate
at which a particle is in contact with the cylinder's inner hardhe concentration profile of the particles confined inside the
wall. Thus, ifR |s.the actual radius of the cyImdgr, and if we cylinder. The method of Brownian dynamics, as proposed by
assume the particle to have a hard-sphere diamstéhen  Ermak and McCammofiL6], is based on the solution of the
R'=R—o01/2, andK,, is the electrostatic potential energy, in generalized N-particle diffusion equation. Within this

referred to the potential at the center of the cylinder. enough time intervalit) is given by

Concerning the pair potential between two colloidal par-
ticles, it will be modeled by the screened Coulomb or
Yukawa potentia[10,13. This is, of course, completely jus-
tified when the two particles are in the bulk suspension, but . . T -
when they are in the interior of a very narrow pore, theWhere DO is the free-part.|cle (_j|ffu5|on coefficient, aqd
conditions of confinement will definitely give rise to modifi- Ri(_At)_'S a random Gaussian displacement Of_ the particle,
cations from this simple pair potential. Nevertheless, one calyNich is assumed to have zero mean and variariogAd.
expect that the Yukawa form is still a reasonable zeroth ordef "€ forceF; in this equation arises from the direct interac-
approximation, which at least retains the basic soft repulsivdons of theith particle with the cylinder’s field of force and

character that a more detailed calculation is expected to eVith the other Brownian particles in the system. Also, in
hibit. To conform with previous work of a similar king], order to minimize edge effects due to the finite size of the

we write the pair potential in dimensionless form as simulation system, we have used conventiddal periodic
boundary conditions in the direction.

The connection of the computer simulations with the
theoretical results is made by fixing the total number of par-
Bu(r)=3 Kexg—z(r/o—1)] . (2.9 ticlesN inside the volumerR2L of the basic simulation cell

(rlo) ' o (of lengthL in the z direction) such that

lo(kp)

B‘I’(P)ZKWW,

ri(t+At)_ri(t):BDoFiAt+Ri(At), (27)

o, <o




4408 M. CHAVEZ-PAEZ et al. 55

__N JRn[1+H(p)]27pdp 28 0.002
Nav= T R2L 7R ’ '

where H(p) is obtained from the solution of Ed2.6). In

practice, for a given systefie., fixed one- and two-particle

interaction potentials, and fixed), Eq. (2.8) fixes the ratio

N/L. Thus, we made the pertinent tests to discard any depen-

dence of the simulation results dhand/or onL by varying

these parameters, keeping their ratio fixed by @d), until 0.001
no dependence was found bi{p). In many cases we found

that already withN~100 convergence was observed, par-

ticularly when the ratidN/L was small.

1

lll. RESULTS

A I TR TE TR AT

Let us now present the results forn*(p)
=n*[1+H(p)], wheren* is the dimensionless bulk number 0.000
concentratiom* =no3. For a systematic presentation of our 0 20 40 60
results, let us notice that the independent parameters that we X/c
could vary are those referring to the bulk suspension,
namely, the Yukawa parametdfsandz, and the bulk con- FIG. 1. Local concentration profile* (p), plotted as a function
centrationn*, and the parameters referring to the wall- of x=R’—p, for three different values oR’ (R’'=30c, 500,
particle interaction, namely,, andR’. Varying those five  100s) and forK,,=400. The bulk parameters an& =8.4x 10" %,
parameters we can generate all the possible structures th&t=400, andz=0.15.
the Yukawa fluid will adopt when confined in the interior of

the cylinder. Here we shall not exhaust all those IC)OSS'bl%ctual limit//R'—0, the structure of the confined Yukawa

structures, but will choose some of them to illustrate the, ="~ " . :
various regimes that appear when the screened electrostaﬂg'd inside a cylinder approach_e_s that of_the same fluid near
interactions dominate. Thus, for concreteness, let us considér gharged plana_r wall, a C.Or.'d't'on studied prewo_usly. The
a typical suspension of highly charged spheres at low ionicSOI'd, line in F'g: 1 exhibits n(p) as a function - of
strength. Parameters representative of these conditions af& R —p» @s obtained from the solution of our theory, for
2=0.15,K=400, andn* =8.4x 10"%. One relevant length the |IIustrat|\_/4e bulk parameters abovda(,(:400, z=0.1_5,

for this system is the mean interparticle distance —8:4X107%), and for K, =400 andR’=1000. As it
/*=/lo=n* Y which for this system is about turns out, already for _thls radius, 'ghe shapenp) near Fhe
/*=10.6, i.e., of the order of the screening lengtht wall has approached its asymptotic value corresponding to a

(=6.67 for this systein The bulk structure for this system is flat surface R"=c), up to the resolution of the figure. From
represented by the radial distribution functigr), which ~ the solid line, we can see tDat the distance of closest ap-
defines another relevant length scale, namely, the correlatigf©ach to the wall is aboud” ~10, solthat the effective
length \ (the distance at whicky(r) reaches its asymptotic 'adius corresponding t&,,=400 andR’=100v is about
limit). For the particular suspension that we are using as affer~ 900 The other important feature to notice is i is
illustration, \* = \/g~5/*. not only much larger thar (~10.60), but is already larger

Let us now consider the structure of the suspension insidi!an the bulk correlation length (~500). As a result, the
a cylinder of radiuR’ and repulsion parameté, , in con- local concentratiom™* (p) attains its bulk value* inside a
tact with the bulk reservoir above. In first approximation we"€gion around the cylinder axis, defined approximately as
can classify the various possible structures inside the cylin®<(Rer—A). Thus, we can say that the solid line in Fig. 1,
der in terms of the ratio of the mean interparticle distanceVhich corresponds to a thick cylinder of large but finite ra-
/ and the radiu®’. In reality, we shall restrict ourselves to dius, is representative of the regime in which the structure of

values ofK,, large enough so that the hard contact betweerh€ confined Yukawa fluid is virtually identical to the struc-

one particlév and the wall will be completely unlikely. Thus ture of the fluid near a flat wall, and with a well-defined bulk

n(p) will always be nearly zero not only at contact, but also"€9ion in the middle of the cylinder. _

within a finite region between the walp& R’) and a certain In this regime, two interesting scaling properties are ob-

effective distanced of closest approach to the wall. This S€rved inn(p). The first of them refers to the fact that
defines an effective raditR.=R’ —d of the cylinder, which ~"(¢) only depends on the bulk parameters K, andz, and

will depend onR’ but also onK,,. Thus, if we compare” onK,, but n_ot onR’, Whe””ﬁp) is plotted as a_function of
with the thickness of the cylinder, it makes more sense tdn€ Wall-particle distance=R’—p, as done in Fig. 1. Thus,

compare” with Ry, rather than withR’ itself. th/e solid line in that figure not only (,:orresponds to
=1000, but also to any other value d®’ larger than

_ ) 1000, as well as to values d®’' smaller than 108, but still

A. Very thick cylinders larger than\ (=~500), say, down to abouR’'~700. For
Let us first consider “very thick” cylinders, i.e., the re- R’ of the order ofA, deviations from this rule are observed.
gime in whichR.2 /. First of all, let us notice that in the This is illustrated in Fig. 1 by the curve, corresponding to
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FIG. 2. Local concentration profile* (p), plotted as a function
of x=R’'—p, for two different values oK, andR’. The solid line (b)
corresponds té,,= 400 andR’ = R®W=100s. The dashed line cor-
responds td,,= 800 andR’ =R(? =104.62r. The bulk parameters
are the same as in the previous figure.

R’ =500, which is slightly below the threshold condition
Re~\. As one can see from the comparison with the solid
line (R"=1000), the quantitative differences are still rather
small, even though foR’ =500 the bulk region around the
cylinder axis has disappeared completely. It is also interest-
ing to notice that even if we decreaRé still further, so that
the structure oh(R’ —Xx) is constituted only by two maxima,
at least the shape and position of the main peak are still not
dramatically different from the limiting conditiofR’ — .
This is also illustrated in Fig. 1 by the curve corresponding
to R"=300, in whichR.~200, i.e., only twice/, and defi- 0'0000
nitely smaller than the correlation lengkh

The fact thatn(R’ —x) becomes independent &' for
large cylinder radius should not be surprising. The reason is
that the wall-particle potential'(p) in Eq. (2.2), which in
general depends oK,, and R’, becomes independent of
R’ for large R’ when written in terms of the wall-particle _ ! o
distance, i.e., whenR’ —o, B (R’ —x)~K,e . Inthis  corresponding toK,=500 to the left by 6=« Un(KGIKD)
very same limit, and for the same reason, a second scalin§4'62”'
property ofn(R’—x) can be predicted. Thus, notice that the .., cylinders. Clearly, when(p) is plotted as a function of
asymptotic form(large R’) of the wall-particle potential, the wall-particle distancex=R’—p, the two curves will

T

0.001

X/o

FIG. 3. Local concentration profile* (p), plotted as a function
of x=R’—p, for R’ =300, andK,,= 300, andK,,= 500, and for the
same bulk parameters as in Fig. 1.(b) we have shifted the curve

BY(p,R'Ky)=K,e """, has the property appear shifted by a displacement given by
5=k Un(K@/KD). This is illustrated in Fig. 2, where
(1) gDy = (2) K(2) w Ky :
AV (p.REK) =BV (p,REKG, (3.) n(R'—x;K,,) is plotted for the same bulk conditions as in

Fig. 1 for two different cylinder parameters, namely,
provided thatR®=RM+ 5, with 5=k~ UIn(KP/KS). This  kM—400 RO=100r (solid line, K@=800, and
means that the force that a particle feels at a distanitem R(‘Aé):104_'627 (dashed ling WhiCh, sat;gfy R(z)’: R
the axis of a cylinder radiuR*) and wall-particle parameter + K‘lln(K(Z)/K(l)). If we displace the second curve to the left
K\(Nl) is the same as that felt by the same particle at the samg 5:4.65:7 i\thoincides exactly with the solid curve.
distance from the axis of another cylinder of radri$) and We can éummarize the consequences of the two scaling
wall-particle ~ parameter K,  provided that R®  properties of(p) by the following statement. In the region
=R+« Un(KP/KE). As a consequence, the particles of thick cylinders, when a well-defined bulk region is ob-
from the same reservoir will structure identicallwhen  served in the middle of the cylinder, the shape of
n(p) is plotted as a function gf] when they penetrate these n(p,R’,K,,) does not depend oR’ when plotted as a func-
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FIG. 4. Local concentration profile* (p) for R’ =300 and for

K,,=500, 1000, 1500, and 2000. The bulk parameters are the same F!C- 5. Comparison between the theoreticrftl resultsnfofp)
as in Fig. 1. (lines) and computer simulation@ymbolg, for R’ =300, and for

K=500 and 1000. Open circles correspond to simulation results
with K,,=500. Open triangles correspond to simulations with

. . . o .
tion of the wall-particle distance=R’—p. Furthermore, it K,,—1000. The bulk parameters are the same as in Fig. 1.

is also independent df,,, since any two curves(x) cor-
responding to two different values &, will superimpose  gbserved if we keeg,, fixed, while decreasing’. In either
after shifting one curve towards the other by a displacemengase one interesting structure is observed, illustrated in Fig. 4
of the coordinatex given by 5=« HIn(K/KS)). by the curve corresponding #,,=1500. This is character-
ized by a single, fairly well defined peak im(p), of width

Ap, located at a distangg,,, from the axis. For this particu-

lar case Ap~4co, andppa=60. Thus, Ap/2)<pax and

this means that for this value &,,, the region inside the
cylinder of radiusR’ to which the particles are confined is a
cylindrical shell of inner radiug,,,— Ap/2, and outer radius
Pmaxt Ap/2. This is a remarkable condition of self-
confinement resulting from the equilibrium of the wall-
particle interactions, which tend to confine all the particles at

B. Narrow Cylinders

Let us now discuss the regime in whigly~ /. Already
in Fig. 1 we presented the results flef =300, K,,=400 in
the context of our discussion on the dependence(p) on
the cylinder’s radiu®k’. There we saw that the scaling prop-
erty valid for thick cylinders, and consisting of the indepen-
dence ofn(R’—x) on R’, broke down forR’' =300, well

inside the regime that we are now discussify€ /), al-

though the shape and position of the main peak o
n(R’'—x) were clearly reminiscent of the limiting structure
for largeR’. In Fig. 3@ we now illustrate the consequences

he cylinder axis, and the particle-particle repulsions, which

t:end to expand the volume occupied by the particles. Clearly,

if the wall-particle interactions continue to increase, as indi-
cated by the curve correspondingKq,= 2000, the position

of increasingK,, from K,,=300 toK, =500, for the same
reservoir as in Figs. 1 and 2, but for a relatively narrow
cylinder (R'=300). An obvious question here is to what
extent the second scaling property will still apply in this
regime(well outside the regime of very thick cylinderd\s
indicated in Fig. &), after shifting the solid curve until the
two maxima are in the same position, and as expected, the
two curves do not coincide exactly, but they are remarkably
similar, even quantitatively. Besides this observation, Fig. In this manner, we have described the sequence of struc-
3(a) also illustrates the main features of the evolution oftural changes im(p) predicted by the theory, when the wall-
n(p) when K,, increases, keepin@®R’ fixed, namely, the particle parameterR’ andK,, are varied, keeping the bulk
shifting of the main peak of(p) away from the wall, and parameters*, z, andK fixed. The general conclusion is that
the approach of the second peak towards the cylinder’s axishe main qualitative effects are basically the same if we ei-
In Fig. 4 we plotn(p), now as a function of the distance ther decreas®’ or increaseK,,. These effects refer to a
from the axis, forK,,=500, 1000, 1500, and 2000, to illus- progressive confining of the particles toward the center, and
trate the eventual disappearing of the second peak, and thieeir eventual expulsion from the cylinder. Let us now com-
corresponding approach of the main peak to the cylinder'snent on the results of the computer simulations for the same
axis. In this sequence, the radius of the cylinder was kepproperty. The most interesting regime in our analysis is that
fixed (R"=300). We should mention that a similar trend is in which the effective radiuR.; is of the order of the corre-

of the peak is shifted towards the axis, resulting eventually in
a single peak located at,,,=0. Further increase iK,, will
result in the eventual expulsion of all the particles inside the
cylinder, manifested in a decrease of the height of the re-
maining central peak afi(p).

C. Comparison with computer simulations
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FIG. 7. Same results as in Fig. 5, but with the theoretical and
simulated data corresponding kq,= 1000 shifted to the right by
lation length, or even of the mean distance. This regime wag=>5.60.
illustrated here by Figs. 3 and 4. Before presenting the cor-
responding simulation results, let us mention that the comeorresponding td&,,= 1000 were shifted so that the position
parison between the present theory and the computer simf the main peak of the computer simulatetp) coincides
lation was already discussed in the context of the planawith the position of the main peak of the computer simulated
geometry{9]. Such discussion applies to our present problerm(p) corresponding td,,=500. The magnitude of the dis-
when we refer to the regime of very thick cylinders placements, however, is no longer explained by the rule
(R'—=; see Fig. 1 As illustrated in[9], the computer 5=« tn(KE/K{), which holds for thick cylinders(this
simulations exhibit the same general features predicted byyle would predict §=4.62r, whereas the displacement
the theory, and except for quantitative discrepancies in th@eeded for Fig. 7 wag~5.60). As observed from this fig-
heights of the maxima and minima n{R’ —x), the general yre, however, the scaling rule holds here to a very good
quantitative agreement between theory and simulations caflegree of quantitative accuracy, both for the theoretical and

be said to be good. Although with a little less quantitativethe simulated results, at least regarding the main peak of
accuracy, the same statement can be made concerning they).

corresponding comparisdgtheory versus simulatiohsn the
interior of narrow cylinders, and this is what we now discuss.
In Figs. 5 and 6 we have again the four curves of Fig. 4,
but now compared with their corresponding computer simu- We can now summarize the results presented in this pa-
lation results. These figures illustrate the nature of the genper. First of all, we learned the scaling propertiesnp),
eral agreement between the present theory and the correshich basically states that the independenca(@f) on the
sponding simulations. From this comparison, we find that thevall-particle interaction parametels andK,,, when plotted
agreement is qualitatively pretty good, concerning the numadequately, holds quite accurately for thick cylinders. Sur-
ber and location of the maxima of( p). Their height, how- prisingly enough, however, the same prediction holds semi-
ever, is generally underestimated by the theoretical predicquantitatively also for very narrow cylinders. Our discussion
tions. These comments apply to most of the conditions wevas illustrated with both theoretical calculations and
studied, including those employed here to illustrate themcomputer simulations for a typical bulk systerm*(
The most important departures refer to the most extreme case8.4x 104, z=0.15, K=400), varying the wall-particle
illustrated by the curve correspondingkq,=2000 in Fig. 6, parameterR’ andK,,. The same scenario, however, was
in which the structure ofi(p) is reduced to a single peak, observed when* was varied. In fact, increasing® leads to
almost centered at the axis. It is also interesting to notice thatimilar effects as increasirlg. In both cases this leads to an
the scaling properties discussed before continue to hold, alncrease of the effects of the interparticle Yukawa repulsions,
though in an approximate manner, even in the regime illusmanifested by a more pronounced structurenip) (i.e.,
trated by Fig. 5, which is well outside the regime corre-higher maxima and lower minimaand by a reduction of the
sponding to thick cylinders. Thus, as discussed above foeffective distance of closest approach of the particles to the
largeR’, the shape ofi(p) does not depend oR’ or K,,, cylinder hard wall.
thus being a function only of the bulk parametafs z, and All the conclusions above are only valid as long as we
K, provided the curves fan(p) for differentR’ andK,, are  restrict ourselves to systems in which direct hard-core con-
made to coincide in the position, for example, of the firsttact between two particles and between one particle and the
maximum. This is illustrated in Fig. 7, where the curvescylinder hard wall are prevented by a large value of hth

FIG. 6. Same as in Fig. 5, but witk,,= 1500 and 2000.

IV. CONCLUSIONS
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andK,,, respectively. When these conditions are not met, ateduced oR’ is increased. Unfortunately, the most interest-
least in the asymptotic limiR’' — o, one should expect other ing features of this transition are not captures by the theoret-
interesting effects, such as the formation of an adsorbeital approach employed here, although some of them are
monolayer in contact with the cylinder wall, followed by a neatly revealed by the computer simulations. The discussion
depletion layer where the particles are not allowed to be inef this aspect, along with others that fall outside the scope of
As we have seen in the last figures here, however, already ifhis paper, is currently being investigated in detail.

the regime studied here other interesting effects appear, such
as the confinement of the particles to a cylindrical shell of
width Ap, and positionp,.x, Which collapses to a single
central peak im(p) when the confining is extreme. In this
extreme limit, the particles are virtually confined to the cyl-  The authors wish to thank Dr. J. M. Mdez-Alcaraz for
inder axis, with small radial deviations of extefip. The  providing the program to calculate the Rogers-Young’s bulk
opposite process, in which this axial string of particles isdirect correlation function. We also thank the Computer Cen-
destabilized, corresponds to the buckling transition. This corter of the Universidad de Guadalajara, N, where some
responds to the condition in which the system breaks itsalculations were performed. This work was partially sup-
confinement to essentially one dimension, to form structureported by the Consejo Nacional de Ciencia y Tecnalog!
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